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Abstract. The unintegrated gluon density in the photon is determined, using the Kimber–Martin–Ryskin
prescription. In addition, a model of the unintegrated gluon is proposed, based on the saturation model
extended to the large-x region. These gluon densities are applied to obtain cross sections for charm and
bottom production in γ∗p and γγ collisions using the kt factorization approach. We investigate both direct
and resolved photon contributions and make a comparison with the results from the collinear approach
and the experimental data. An enhancement of the cross section due to inclusion of non-zero transverse
momenta of the gluons is found. The charm production cross section is consistent with the data. The data
exceed our conservative estimate for bottom production in γp collisions, but theoretical uncertainties are
too large to claim a significant inconsistency. A substantial discrepancy between theory and the experiment
is found for γγ → bb̄X, which is not cured by the kt factorization approach.

1 Introduction

The production of heavy quarks at high energies has been
vigorously studied experimentally in recent years. Mea-
surements of cross sections for charm and bottom produc-
tion have been performed in proton–proton [1], proton–
photon [2–6] and photon–photon [7, 8] collisions. The
charm data in γ∗p and γγ collisions may be reasonably
well described by the standard collinear formalism, based
on LO QCD with NLO corrections [9]. For bottom how-
ever, the experimental results exceed significantly the the-
oretical expectations in all cases. The largest discrepancy
has been found for bottom production in γγ collisions at
LEP [8], where the measured cross section is larger by a
factor of four than the QCD prediction.

The enhancement of the bottom production cross sec-
tion was reported with different beams and at different
energies, which suggests the presence of an important sys-
tematic effect, omitted in the QCD analysis. It is partic-
ularly puzzling because of the large mass of the bottom
quark, giving a safe ground for the perturbative approach.
Attempts have been made [10–18] to resolve this problem
by going beyond the standard collinear formalism and use
the kt factorization approach [10–12, 19]. Thus, instead
of assuming that massless partons are distributed in the
colliding objects having a negligibly small transverse mo-
mentum, one considers the complete kinematics of parton
scattering, taking into account the transverse momenta.

This intrinsic transverse momentum k of the parton
is built up in the perturbative evolution, as a result of
subsequent emissions of gluons or quarks, and its distri-
bution is parameterized by the unintegrated parton distri-
bution. The influence of the parton transverse momentum

on the cross section depends on the relevant hard matrix
element, which has to be evaluated for virtual partons
(off-shell matrix element). Calculations using the off-shell
matrix elements combined with the unintegrated parton
distributions were performed for bottom production in pp̄
collisions [13, 15, 16]. Indeed, the obtained cross sections
are larger than those in the collinear approximation and
agree with the data within the uncertainties. For γ∗p an
enhancement is also found for a direct photon [14, 16, 18],
but is not sufficient to describe the data.

The unintegrated gluon distribution in the proton eval-
uated at the factorization scale µ Fg(x,k2, µ2) is a sub-
ject of intensive studies itself (for a review, see [20]). This
quantity depends on more degrees of freedom than the
collinear parton density, and is therefore less constrained
by the experimental data. Various approaches to model-
ing of the unintegrated gluon have been proposed. For in-
stance, in the leading logarithmic 1/x approximation, the
evolution of Fg(x,k2, µ2) is given by the BFKL [21] or
CCFM [22] equations. The unintegrated gluons following
from those equations were fitted successfully to inclusive
data from ep scattering [23, 24]. This approach is restricted
to the small x regime. Recently, it has been shown [25–
27] that the information contained in the collinear parton
densities combined with the properties of parton emission
amplitudes (e.g. the angular ordering) is sufficient to de-
termine the unintegrated gluon up to a large x. An inter-
esting model for the gluon is also given by the successful
saturation model [28], introduced by Golec-Biernat and
Wüsthoff (GBW).

Models for the unintegrated parton distributions in the
photon were not available until very recently [29–31] and
no results for the resolved photon are known beyond the
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collinear limit. Thus, the main purpose of this study is
to obtain in an independent way, the unintegrated gluon
distributions in the photon, using the Kimber–Martin–
Ryskin (KMR) [26] prescription and to apply them to de-
scribe the heavy quark production (charm and bottom)
in γγ and γp collisions. Application of the kt factorization
formalism for the case of resolved photon(s) is performed
for the first time. We also obtained an alternative gluon
density in the photon based on the generalized saturation
model [32] for γγ interactions. We will explore a variety
of gluon parameterizations and account the other model
ambiguities in order to estimate the theoretical uncertain-
ties. We will examine whether the excess of the bottom
production in these processes can be explained within the
kt factorization approach.

This paper is organized as follows: in Sect. 2 the unin-
tegrated gluon in the photon is obtained and its proper-
ties are discussed, in Sect. 3 the kt factorization formulae
are presented and in Sect. 4 the cross sections for heavy
quark production in γγ and γp collisions are calculated.
A discussion of the results is given in Sect. 5, followed by
conclusions in Sect. 6.

2 Unintegrated gluon distributions
in the photon

In the construction of unintegrated gluon distributions in
the photon we apply the same method as for the distri-
butions in the proton. The off-shell parton distributions
in the proton are better known and their properties have
been investigated to a great extent (see [20] and refer-
ences therein), while similar distributions in the photon
are poorly known and no attempts have been made to
describe them until recently [29–31].

2.1 The KMR approach

The conventional gluon distribution g(x, µ2) corresponds
to the density of gluons in the photon having a longitudi-
nal momentum fraction x at the factorization scale µ. This
distribution satisfies the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) evolution [33] in µ2 and it is
universal for the photon in different processes. The distri-
bution does not contain information about the transverse
momenta k of the gluon, which is integrated over up to
the factorization scale µ :

xg(x, µ2) =
∫ µ2

dk2Fg(x,k2, µ2). (1)

However, in order to better describe processes by properly
considering the transverse momentum of the gluon, un-
integrated parton distributions Fg(x,k2, µ2) are needed.
These distributions take into account the complete kine-
matics of the partons entering the process at the leading
order (LO).

As a first attempt, the unintegrated gluon density may
simply be obtained [25], at very low x, from the collinear

gluon density xg(x, µ2). This density becomes indepen-
dent of the hard scale µ2, and will only depend on one
scale k2:

Fg(x,k2, µ2) =
∂

∂Q2 [xg(x, Q2)]
∣∣∣∣
Q2=k2

. (2)

The above equation no longer holds, as x increases,
since Fg(x,k2, Q2) becomes negative. This may be cir-
cumvented, however, by introducing a Sudakov form fac-
tor Tg(Q, µ), which takes into account subleading correc-
tions at low x. Thus, the unintegrated distribution has
now a two-scale dependence [27, 34]:

Fg(x,k2, µ2) =
∂

∂Q2 [xg(x, Q2) × Tg(Q, µ)]
∣∣∣∣
Q2=k2

, (3)

with the form of Tg(Q, µ) given below. The form factor
represents the probability of the gluon with the transverse
momentum k to survive untouched in the evolution up to
the factorization scale.

A better framework for unifying the small x and large
x regions is provided by the Catani–Ciafaloni–Fiorani–
Marchesini (CCFM) equation [22]. This equation is an
evolution equation for the unintegrated gluon distribution
Fg(x,k2, µ2) which considers real gluon emission in a lad-
der and is based on angular ordering of the gluons in the
chain. The formalism has a natural interplay of two scales:
the transverse momentum k of the gluon and the hard
scale µ, which corresponds to the maximal angle of the
emitted gluons. Thus, the unintegrated gluon distributions
which can be constructed will have a two-scale dependence
Fg(x,k2, µ2), where µ will have a dual role, that of fac-
torization scale and controlling the angular ordering. At
small x, the CCFM formalism is equivalent, in the leading
log(1/x) approximation, to the Balitskij–Fadin–Kuraev–
Lipatov (BFKL) formalism [21], and Fg(x,k2, µ2), which
satisfies the BFKL equation, becomes µ-independent. At
moderate x, the angular ordering is replaced by kt order-
ing, and the CCFM equation reduces to DGLAP.

A simplified solution to the complicated two-scale
CCFM evolution was obtained by Kimber, Martin and
Ryskin (KMR) in [26]. They observed that the µ depen-
dence in the distributions enters only in the last step of
the evolution, and single-scale evolution equations can be
used up to the last step. In this approximation, the unin-
tegrated gluon distribution is given by

Fg(x,k2, µ2) =
Tg(k, µ)

k2
αs(k2)

2π

∫ 1−δ

x

dz (4)

×
[
Pgg(z)

x

z
g
(x

z
,k2
)

+
∑

q

Pgq(z)
x

z
q
(x

z
,k2
)]

,

where Pgg(z) and Pgq(z) are the gluon and the quark split-
ting functions, while g(x, Q2) and q(x, Q2) are the conven-
tional gluon and quark densities. The Sudakov form factor
introduces the dependence on the second scale µ in the last
step of the evolution and has the following form:

Tg(k, µ) = exp

(
−
∫ µ2

k2

dp2

p2

αs(p2)
2π
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Fig. 1a,b. Comparison between the off-shell gluon distributions in the proton and in the photon, using KMR approach, as a
function of a longitudinal momentum fraction x and b transverse momenta k of the gluon, for fixed values of k2 (GeV2) and
x, respectively

×
∫ 1−δ

0
dzz

[
Pgg(z) +

∑
q

Pqg(z)

])
, (5)

where δ = p/(p + µ) is chosen to provide the correct an-
gular ordering of the real gluon emissions.

We have extended the KMR formalism to the case of
the photon. In the following we will use the unintegrated
gluon density in the photon defined by (4). The conven-
tional gluon and quark densities in the photon are ex-
pressed following the Glück–Reya–Schienbein (GRS) pa-
rameterization [35]. Thus, g(x, Q2) and q(x, Q2) consist of
two components, a point-like (perturbative) component
parameterized in [35] and a hadronic component, given
by the parton distribution functions in the pion [36]. For
instance, for the gluon we use

xg(x, Q2) =
1

αem
xgpl(x, Q2) + (G2

ω + G2
ρ)xgπ(x, Q2), (6)

with G2
ω = 0.043 and G2

ρ = 0.50, while the respective for-
mulae for quarks can be found in [35]. The obtained unin-
tegrated gluon density is defined for k2 > k2

0 = 0.5 GeV2,
which is the starting scale for the GRS distribution. How-
ever, an extrapolation to cover the whole range in k2 has
been performed, extending the gluon density to values of
k2 < k2

0 by normalizing it to the GRS distribution in the
following way: Fg(x,k2, µ2) = xg(x, k2

0)/k2
0.

Another solution [37] to the CCFM equation was found
using the “single loop” approximation, when small-x ef-
fects can be neglected in the CCFM equation for medium
and large x. Thus an exact analytic solution can be ob-
tained, and a comparison between this analytic solution
for the proton and the KMR approximation shows quite
good agreement [37]. Similarly, for the photon [31] the
unintegrated gluon distributions obtained from the exact
solution of the CCFM equation in the single loop approxi-
mation can be well represented by the KMR distributions
constructed using the integrated quark and gluon distri-
butions and the Sudakov form factor.

Although the KMR constructions of unintegrated gluon
distributions for the photon and proton are similar, the

distribution in the photon is significantly different due to
the point-like component. As can be seen in Fig. 1, a direct
comparison between the unintegrated gluon in the photon
and in the proton shows a relative enhancement for large
x and large k in the case of the photon. This enhancement
is due to gluon emissions from the perturbative quark box,
making the gluon distribution much harder as compared
to the proton for large values of x. For small values of x,
the similar shape of both distributions indicates that the
information about the shapes, contained in the input at
large x, is partially lost in the evolution. Note that for
the respective KMR gluon density in the proton we have
used the conventional GRV parameterization [38] for the
proton.

2.2 The GBW gluon

Another parameterization of the unintegrated gluon den-
sity in the photon can be obtained using a simple gener-
alization of the Golec-Biernat and Wüsthoff (GBW) pa-
rameterization of the gluon in the proton [28]. The unin-
tegrated gluon density introduced in [28] for the proton,

Fg(x,k2) =
3σ0

4π2αs
R2

0(x)k2 exp(−R2
0(x)k2), (7)

is related to the effective dipole cross section within the
saturation model

σ̂(x, r2) = σ0[1 − exp(−r2/(4R2
0(x)))], (8)

which describes the interaction between a proton and a
color qq̄ dipole coming from a photon fluctuation:

σγ∗p =
Nf∑
a=1

∫ 1

0
dz

∫
d2r|Ψa(z, r)|2σ̂(x, r2). (9)

In the above equations, r denotes the transverse separa-
tion of the quarks and z gives the longitudinal momentum
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of the quark in the photon. The wave function of the pho-
ton is represented by Ψa(z, r), where a indexes the flavor
of the quark in the dipole, and its form can be found in
[28], for instance. Thus, for real photons the mass of quark
a gives the characteristic scale for the dipole distribution
in the photon. The saturation radius is given by

R0(x) =
1

Q0

(
x

x0

)λ/2

, (10)

with σ0 = 29.12 mb, αs = 0.2, Q0 = 1 GeV, λ = 0.277 and
x0 = 0.41 × 10−4. The three free parameters σ0, λ and x0
have been fitted and the saturation model describes suc-
cessfully both inclusive and diffractive γ∗p scattering [28].
The mass of the light quarks u, d and s, mq = 0.21 GeV
is taken from a fit of the saturation model to inclusive
two-photon observables [32].

Following the generalization of the GBW saturation
model for the case of γ∗γ∗ scattering introduced in [32],
one can easily construct in a similar fashion the uninte-
grated gluon distribution in the photon. In such a case,
we consider the scattering of two color dipoles, into which
the photons fluctuate, one light qq̄ dipole and one heavy
QQ̄ dipole

σγ∗γ∗
=

Nf∑
a=1

∫ 1

0
dz1

∫
d2r1|Ψa(z1, r1)|2 (11)

×
∫ 1

0
dz2

∫
d2r2|ΨQ(z2, r2)|2σdd

a (x̄, r1, r2).

The heavier dipole with the transverse separation r2 pro-
vides the hard scale at which the dipole content of the
second photon is probed. In this configuration, the rela-
tive size of the heavy dipole (〈r2〉 ∼ 1/2mQ) is smaller
than that of the light dipole (〈r1〉 ∼ 1/2mq). The effective
dipole–dipole cross section σdd(x̄, r1, r2) is a generaliza-
tion of the GBW cross section from (8), introducing an
effective dipole separation radius reff depending on the
size of the two dipoles [32]. In our configuration with one
heavy dipole r2

2 � r2
1, the effective cross section reduces

to (8), depending only on r2.
In this region, the integrals from (11) over z1 and r1

of the first dipole can be performed independently. In the
leading logarithm log(mQ/mq) approximation, the result
of this integration is dominated by the contribution

Nd(µ) =
Nf∑
a=1

∫ 1

0
dz1

∫ ∞

1/µ2
d2r1|Ψa(z1, r1)|2, (12)

with a lower cut-off in r1 provided by the typical size
of the heavy dipole, 1/µ ∼ 1/2mQ. This integral may
be interpreted as the number of dipoles in the photon at
the scale given by the mass of the heavy quark. The final
result after the integration will be a form for the γ∗γ∗ cross
section which is similar to the γ∗p cross section in (9):

σγ∗γ∗
= Nd(2mQ) ×

∫ 1

0
dz2

∫
d2r2|ΨQ(z2, r2)|2σ̂(x, r2).

(13)

The number of dipoles Nd in the photon is found to be
1.46·αem for charm production (Mc = 1.3 GeV) and
2.43·αem for bottom production (Mb = 4.8 GeV).

The extraction of the gluon density in the photon from
(13) will give a parameterization similar to the one in (7):

Fg(x,k2, µ2) = Nd(µ) × 3σ̃0

4π2αs
R2

0(x)k2 exp(−R2
0(x)k2).

(14)
This includes a multiplicative factor given by the number
of dipoles in the photon, and the parameter σ̃0 = (2/3)σ0
as introduced in the generalization of the GBW model [32]
(the factor 2/3 is a reminder of the quark counting rule,
with σ̃0 representing the cross section in the blackness
limit for the photon, and respectively, σ0 for the proton).
The number of dipoles that enters in the gluon density
has an intrinsic dependence on the hard scale given by
the heavy quark mass, which propagates as a secondary
scale at the level of the unintegrated gluon distribution.
All other parameters from the original GBW parameteri-
zation are kept unchanged.

As described in [32], in order to extend the color dipole
model to moderate and large x values, the introduction of
phenomenologically motivated threshold factors was nec-
essary. Thus, we have imposed the following form on the
total cross section in γγ interactions:

σγ∗γ∗ ∼ (1 − x)2nspect−1.

In the kt factorization approach, this factor can be un-
derstood as having a dual contribution, from the off-shell
matrix elements and the unintegrated gluon distributions,
which consider the correct kinematics of the hard process.
To account for the full kinematics in the unintegrated den-
sity of the photon, we will introduce such a multiplicative
factor in this density. When probing the gluon content of
a hadron with a photon, only sea quarks can be picked, so
the number of spectators is nspect = 4 in the case of a pro-
ton (3 constituent quarks plus 1 sea quark), and nspect = 3
for the photon case (2 quarks from the dipole plus 1 from
the sea).

Multiplying Fg(x,k2, µ2) from (14) with the factor
(1 − x)5 and integrating it to obtain the corresponding
on-shell gluon density, we find the same dependence with
x as the GRS distribution for large-x. As seen in Fig. 2, the
integrated gluon distribution provides a better agreement
with the existing data extracted from photoproduction of
hard dijets at HERA [39], as compared to the case where
no threshold factor was included. Similarly, we have ex-
tended the applicability of the GBW gluon distribution
for the proton (7) for large values of x by introducing the
multiplicative factor (1 − x)7.

The above unintegrated gluon distribution obtained
using the extended saturation model exhibits a different
x and k dependence than the previous density stemming
from the KMR approach. These differences are best ex-
pressed in Fig. 3, where a suppression for large values of k
and an enhancement at small momenta can be seen in the
GBW gluon. In spite of their unlikeness, the two distribu-
tions give quite similar results when integrated over the
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transverse momenta. Figure 2 shows how the integrated
KMR distribution, similar to the conventional gluon den-
sity GRS, and the integrated GBW gluon compare with
the data. Let us note how poorly constraining the data
are for the gluon content of the photon, and that a new fit
could give an increase in the gluon distribution which can
significantly alter the predictions for cross sections based
on these distributions.

3 Cross sections for heavy quark production

Heavy quarks may be produced in two-photon collisions by
one of the three mechanisms: a direct production (Fig. 4a),
a photoproduction off a resolved photon (Fig. 4b) and by a
double-resolved process (Fig. 4c). The direct contribution
to the process γγ → QQ̄X is governed by elementary QED
amplitudes [40]. In the case of proton–photon scattering,
this component is absent.

In the collinear limit one uses the leading twist term
of the operator product expansion, neglecting the trans-
verse momenta of the partons. The cross section for heavy
quark photoproduction off one of the photons being re-
solved reads

σcf
1R(s, M2) =

∑
i

∫
dx

x
fi(x, µ2)σ̂cf

γi (M
2, xs), (15)

where the partonic cross sections σ̂cf
γi are well known up

to the NLO approximation and fi(x, µ2) is distribution
function of the parton i in the photon, at the factorization
scale µ � 2M . In the above, s denotes the γγ invariant
mass squared, and M is the quark mass.

In the kt factorization formalism, the complete kine-
matics of the gluon–photon fusion is taken into account
and the small light-cone component of the longitudinal

momentum of the gluon is integrated out. Then the cross
section takes the following form:

σkf
1R(s, M2) =

∑
i

∫
dx

x

d2k

π
Fi(x,k2, µ2)σ̂kf

γi (k2, M2, xs),

(16)
in which the unintegrated parton density Fi(x,k2, µ2) and
the off-shell partonic cross section σ̂kf

γi (k2, M2, xs) are em-
ployed. The partonic cross sections are evaluated using
off-shell matrix elements. The form of σ̂kf is well known
in the literature, see for example [11], and we quote it in
Appendix A. Formulae (15) and (16), with the appropri-
ate substitution of parton densities, are valid also for the
photoproduction off the proton. It is important to note
that, in a γγ collision, one or the other photon may be
resolved; thus the inclusive cross section for heavy quark
production acquires an additional factor of 2. At the LO
approximation, only gluons contribute to the QQ̄ produc-
tion.

The double-resolved contribution to the process γγ →
QQ̄X is described by

σcf
2R(s, M2) (17)

=
∑
i,j

∫
dx1

x1

dx2

x2
fi(x1, µ

2)fj(x2, µ
2)σ̂cf

ij (M2, x1x2s)

in the collinear limit, and the cross section in the kt fac-
torization formalism reads

σkf
2R(s, M2) =

∑
i,j

∫
dx1

x1

dx2

x2

d2k1

π

d2k2

π
(18)

× Fi(x1,k
2
1, µ

2)Fj(x2,k
2
2, µ

2)σ̂kf
ij (k1,k2, M

2, x1x2s),

where σ̂kf
ij for the gluons is given in Appendix B (follow-

ing from [41]). Analogously, one of the photons may be
replaced by the proton in order to obtain a resolved pho-
ton contribution to heavy quark photoproduction off the
proton.

In the following, we shall restrict ourselves to the ef-
fects of the transverse momentum in the gluon kinemat-
ics, and the quark contribution will only be taken in the
collinear approximation. This should not significantly af-
fect the results, as the heavy quark production is driven
mostly by exchanges of gluons. For the collinear limit, all
the theoretical estimates were obtained using the PYTHIA
Monte Carlo [42].

4 Results for heavy quark production

The measurements of cross sections for the inclusive charm
and bottom production in e+e− and ep collisions were per-
formed at LEP and HERA respectively. For bottom pro-
duction at LEP, only the total rate e+e− → e+e−bb̄X was
measured [8], representing an average of the γγ → bb̄X
cross section weighted with the flux of photons in the elec-
trons. For charm, the cross section σ(γγ → cc̄X) was de-
termined for different γγ collision energies [7]. At HERA,
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the cross section for γp → bb̄X is known [5] for the collision
energy averaged between W = 94 GeV and W = 266 GeV.
The data for charm production at HERA [3] are available
for virtual photons, at different virtualities Q2 and colli-
sion energies W in the form of F charm

2 (x, Q2). We give in
this section the theoretical estimates for these processes
based on the kt factorization formalism and study the the-
oretical uncertainties.

4.1 Theoretical uncertainties

The cross sections for heavy quark production are de-
scribed by formulae (16) and (18) with the LO partonic
cross sections given by (23) and (31). The results of the
numerical evaluation of these formulae depend somewhat
on the model for the unintegrated parton densities and the
choice of the parameters. We have examined the following
options for different elements of the model.

The heavy quark mass M

The heavy quark mass M is plagued by a fundamental
uncertainty due to confinement of color – there are no free
quarks, and consequently, there is no on-shell quark mass.
The running quark mass in QCD varies with the scale. It
is not clear at which scale the quark masses in the matrix
elements should be evaluated, because the virtualities of

heavy quarks are different for different lines in the relevant
Feynman diagrams. Thus, we shall assume for the b quark
that 4.5 GeV < Mb < 5 GeV and for the c quark that
1.3 GeV < Mc < 1.5 GeV.

The energy scale µ̄

The energy scale µ̄ that enters the running formula of
the strong coupling constant αs(µ̄2) in the partonic cross
section (see the appendix) is usually chosen to be of or-
der of the typical momentum transfer characterizing the
process. However, the optimal value of µ̄ is such that the
contribution of higher orders in the perturbative expan-
sion is minimal. Thus, without knowledge of higher order
corrections, µ̄ is uncertain and, in order to account for this
ambiguity we considered three options:
(1) µ̄2 = M2 + p2 (standard),
(2) µ̄2 = (M2 + p2)/4 (low scale) and
(3) µ̄2 = 4M2 (large scale), where p = k (gluon transverse
momentum) for the gluon–photon fusion (23) and p =
k1 − k2 for the two-gluon process (31).

Running of the coupling constant

We use the standard one loop running formula for αs, with
four flavors. We use, as a default choice, ΛQCD = 140 MeV,
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such that αs(M2
Z) = 0.117 as given by the latest QCD

fits. We also test the PYTHIA default value: ΛQCD =
250 MeV, corresponding to the value of αs(M2

Z) = 0.128.

Unintegrated parton distributions

For the proton, we take into account the CCFM gluon dis-
tribution, as given in the CASCADE Monte Carlo [43], the
unintegrated gluon obtained from the GRV and MRST
parameterizations using the KMR method (uGRV and
uMRST) and the gluon following from the saturation
model (GBW). In the case of a real photon, the KMR
method is applied to the GRS gluon (uGRS) and an al-
ternative model of the unintegrated gluon is given by the
saturation model for photons (GBWγ), as explained in
Sect. 2.1. Furthermore, we vary the factorization scale in
the two-scale gluon distribution Fg(x,k2, µ2) between µ =
M and µ = 2M .

Parton momentum fraction x

In the collinear approximation, one neglects the non-zero
transverse momentum k of the incoming parton whereas
in the kt factorization approach, the transverse momen-
tum is included in the kinematics of partonic scattering.
Thus, for the virtual photon–gluon fusion, the invariant
mass of the system is ŝγg = xs in the collinear approxi-
mation and ŝ′

γg = xs − k2 when the complete kinematics
is taken into account.

In a standard approximation method, the cross section
in the collinear factorization can be obtained from the one
in the kt factorization, using the substitution σ̂kf (xs,k2,
Q2) → σ̂kf (xs,k2 = 0, Q2)θ(Q2 − k2), and the integrated
parton distributions as defined by (1). However, such an
approximation neglects the fact that the kinematical
threshold in DIS for σ̂kf depends on k2, i.e. the kinemati-
cal threshold for the virtual photoproduction is located at
x � Q2/s in the collinear approximation and at

x̄(k2) � (Q2 + k2)/s � x[1 + k2/Q2] (19)

in the kt factorization framework.
In order to investigate the inclusion of the latter thresh-

old treatment, the standard approximation could suffer
modifications by introducing a rescaled variable z = xQ2/
(Q2 + k2). This will improve the approximation and lead
to an alternative relation between the kt factorization and
collinear approximation expressions, where

zg(z, Q2) =
∫ Q2

0
dk2Fg(z(Q2 + k2)/Q2,k2, Q2). (20)

Thus, the use of the rescaled variable is a way to quantify
the ambiguity in obtaining the unintegrated gluon distri-
bution from the integrated one.

In our investigation of the effects of the threshold treat-
ment in the evaluation of the heavy quark production cross
section, we consider the substitution
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Fig. 5a,b. Cross sections of bb̄ production in γp interac-
tions from the kt factorization approach, showing a the single-
resolved contribution and b the double-resolved contribution.
Details of the curves are presented in the text

x′ =
x

1 + k2/(4M2)
(21)

in the unintegrated gluon distributions Fg(x′,k2, µ2).
Note that for massive quark photoproduction 4M2 re-
places Q2. Such a rescaling is not necessary for the CCFM
gluon, where the kinematical effects of the transverse mo-
mentum are already accounted for in the F2 fits.

4.2 Results for γp interactions

In Fig. 5 we give a set of results for cross sections for γp →
bb̄X with the direct photon (Fig. 5a) and with the resolved
photon (Fig. 5b). The default results (full curves) are ob-
tained by taking the CCFM unintegrated gluon in the
proton (from CASCADE), Mb = 4.5 GeV, µ = 10 GeV,
ΛQCD = 140 MeV and the standard scale for the run-
ning coupling (see Sect. 4.1). For the gluon in the pho-
ton, the KMR method is applied to obtain the uninte-
grated GRS parameterization (uGRS). Besides the de-
fault choice, we also use the unintegrated GRV distribu-
tion (uGRV), based on the GRV NLO parameterization,
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Fig. 6a,b. Comparison between the collinear factorization and the kt factorization approaches to bb̄ production in γp inter-
actions. Shown are the experimental data from EMC [4] and H1 [5]. a The total bb̄ cross section in the kt factorization (solid
line) includes single- and double-resolved contributions. In the collinear factorization, the total cross section (short dashed) also
includes the specific contribution from the qq̄ annihilation for the double-resolved case (long dashed). b Comparison between
the single-resolved components in the kt (solid line) and collinear (short dashed) factorizations, and between the double-resolved
components in the kt (dotted) and collinear (long dashed) factorizations

and the GBW gluon1, leaving the other parameters un-
changed.

Furthermore, we investigate the impact of the x-rescal-
ing, for the uGRV gluon (direct photon) and for both
the uGRV and uGRS gluon (resolved photon). We mod-
ify the default choice of the QCD parameters: we use
ΛQCD = 250 MeV and the low scale for running, in or-
der to obtain an upper limit for the cross section. A very
conservative estimate follows from the choice Mb = 5 GeV
and the large energy scale for αs. We have checked that
using the unintegrated MRST gluon and variations of the
renormalization scale µ has a minor influence on the re-
sults; hence we do not include the corresponding curves in
the figure.

It is visible in the figure that the contribution from
the resolved photon is significant – roughly 20–30% of
the direct photon cross section for the default choice of
the parameters. We have checked that in all cases the re-
solved photon contribution rises faster with the energy W
than the direct photon one. The results are rather sta-
ble against modifications of the unintegrated gluon and
the quark mass. The largest contribution to the uncer-
tainty of the cross section comes from the details of the
QCD running of αs and the choice of the energy scale –
reflecting a potential influence of higher order corrections.
When the low scale of αs and the large value of ΛQCD are
assumed, the direct contribution gets enhanced by about
50% and the resolved one gets doubled. In this extreme
case, the calculation results for the sum of the direct and
resolved photon cross sections σ(W = 180 GeV)= 143 nb
is close to the experimental data point σ = 206±19+46

−40 nb

1 In the definition of the unintegrated gluon in the saturation
model, one assumes a fixed αs = 0.2, and, consequently, the
same choice was made for the coupling in matrix elements when
GBW gluon was used

(see Fig. 6). Thus, although the QCD predictions are sig-
nificantly lower than the data, inconsistency cannot be
claimed, due to the large experimental error and the large
theoretical uncertainty coming from uncontrolled higher
order corrections.

The saturation model estimate of the direct photon
contribution to bottom production is lower than the de-
fault result. The double-resolved contribution obtained us-
ing the GBW parameterization for both the photon and
the proton is slightly larger than its KMR counterpart.
The constraint we have imposed on the parton density at
large x via the threshold factor plays a very important
role for the resolved photon case, being dependent on the
gluon at relatively large x. The consistency of the stan-
dard QCD and saturation model results is not surprising,
as both sets of parameterizations are constrained by the
same experimental data (see Fig. 2). It is, however, strik-
ing that the unintegrated GBW gluon leads to a lower
cross section than the uGRS gluon, while giving a higher
integrated distribution, as shown in Fig. 2. This effect is
caused by the strong suppression of the GBW gluon at
transverse momenta larger than the saturation scale, as
we demonstrated in Fig. 3b.

In Fig. 6a we show results for the total cross section,
σ(γp → bb̄X), obtained in the kt factorization formal-
ism and in the collinear approximation, compared to the
experimental data. In both cases, the direct and resolved
photon contributions are added. The resolved photon con-
tribution, coming from the partonic process qq̄ → QQ̄ is
only evaluated in the collinear limit and is demonstrated
to be negligibly small. In Fig. 6b, the cross sections are
decomposed into the direct and resolved photon compo-
nents.

We used the unintegrated gluon in the proton obtained
via the KMR method (uGRV) and the default values of
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Fig. 7. The structure function F cc̄
2 as a function of x at dif-

ferent values of Q2 between 1.8 GeV2 and 130 GeV2. The con-
tinuous lines represent the results from the saturation model,
with the parameters from [32], compared with the experimen-
tal results from ZEUS [3]

the other parameters for the kt factorization calculation,
as given in Sect. 4.2. The collinear limit results are ob-
tained using the corresponding integrated gluon distribu-
tions (GRV), and the transverse momenta are set to zero
in the definition of the energy scale for αs; that is, we
take αs(M2). Other parameters take their default values.
Therefore, we gain insight into the actual difference be-
tween the studied approximations, not caused by a dis-
crepancy of the input parameters. Thus, it is clear from
Fig. 6b, that a large enhancement (by a factor of three) of
the resolved photon cross section occurs due to non-zero
transverse momentum effects, whereas the direct photon
contribution gains only modestly 10–20% in the magni-
tude. The total cross section is larger by some 20–30% in
the kt factorization approach.

It has been checked that charm production at HERA
is well described within the kt factorization approach [44].
For completeness, we show in Fig. 7 our results for the
charm structure function F charm

2 (x, Q2), based on the
standard saturation model, compared to experimental
data. The quark mass is Mc = 1.3 GeV. The agreement of
the theory and the data is very good, in contrast to the
discussed bottom production case. The results we have ob-
tained for bottom production in the single resolved case
are compatible with previous studies of heavy quark pro-
duction using the kt factorization approach [14, 18]. These
studies found agreement with the first erroneous data
point from HERA [5], which gave a cross section for bot-
tom production lower by a factor 2 than found later [5].
With the inclusion of the resolved photon in the kt factor-
ization framework, we restore a similar level of agreement
with the experimental data.

4.3 Results for γγ interactions

The default set of parameters for bottom production in
γγ collisions is the same as it was in the case of the
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Fig. 8a,b. Cross sections of bb̄ production in γγ interac-
tions from the kt factorization approach, showing a the single-
resolved contribution and b the double-resolved contribution.
Details of the curves are presented in the text

γp process. The unintegrated gluon in the photon is un-
folded from the GRS parameterization, using the KMR
method (see Sect. 2.1). We investigate the sensitivity of
the cross section to variations of the parameters. The re-
sults are shown as a function of γγ energy W in Fig. 8.
The default results (continuous line) are compared with
the results incorporating the kinematical rescaling of x
(see Sect. 4.1). Besides that, the low scale in the running
formula of αs and the large ΛQCD are assumed and the
case of Mb = 5.0 GeV and the large scale of αs is shown.
Furthermore, the unintegrated gluon in the photon from
the saturation model is used. We stress that within the
presented W range, the results are driven by the gluon
at relatively large x ∼ 0.1, where the saturation model is
less reliable and phenomenological threshold factors need
to be imposed.

Furthermore, in Fig. 9 we illustrate the enhancement
of the cross sections due to the non-zero transverse mo-
mentum of the gluon. This figure is constructed in strict
analogy to Fig. 6 as discussed in Sect. 4.2. The conclu-
sions from these results are also very similar to those ob-
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tained in the γp case. Let us only mention that the in-
tegrated and unintegrated GRS parameterizations of the
gluon in the photon were used. Note that the QPM con-
tribution (see the diagram in Fig. 4a) shown in Fig. 9a is
included in the total cross sections σ(γγ → bb̄X). In or-
der to obtain the total cross section σ(e+e− → e+e−bb̄X),
the γγ cross section needs to be weighted with the pho-
ton flux in the electrons. Thus, we obtained the value of
σ(e+e− → e+e−bb̄X) = 1.9 pb for the default case (based
on the KMR gluon density), while the use of the GBW
gluons gives σ(e+e− → e+e−bb̄X) = 2.7 pb. The latter
value is lower than what we previously found using a gen-
eralization of the saturation model [32], with the difference
coming from the threshold factor imposed at the level of
the unintegrated gluon Fg(x,k2) instead of the total cross
section. The behavior of the cross section in the vicinity
of the kinematic threshold is crucial for the interpretation
of the LEP measurements of bottom production. An in-
teresting discussion of this problem may be found in [17].

The general picture which emerges may be summarized
as follows. The theoretical uncertainty of the QCD results
for bottom production is rather large – of the order of 50%
for the single-resolved case and even larger for both pho-
tons resolved. The double-resolved photon contribution
is only a small correction (a few percent) to the single-
resolved photon over the studied energy range. The QCD
models give results 2 times smaller than the GBW model.
The total cross section following from the kt factorization
scheme are not significantly larger than the ones obtained
in the collinear limit. Therefore, the enhancement due to
the use of an unintegrated gluon is not sufficient to solve
the b-excess puzzle in γγ collisions.

In an analogous scheme as for the bottom, we present
in Fig. 10 the results for σ(γγ → cc̄X). Because of the
lower quark mass, the uncertainties related to the en-

ergy scale choice and the definition of gluonic x are larger
than for the bottom production. The double-resolved pho-
ton contribution is again small, a few percent correction
to the dominant single-resolved photon contribution. The
data points are fitted well within the uncertainty band of
the theoretical estimates, as seen in Fig. 11. The extended
GBW model as introduced in [32] and QCD give similar
results for charm within the shown energy range, whereas
in the bottom case the GBW gluon gave a larger cross
section than QCD. The main reason of this difference is
that, within the considered range of energies, the gluon is
probed at lower x for charm, as compared to the bottom
case.

5 Discussion

The main goal of this study is to investigate whether the
puzzle of bottom production excess in γp and γγ colli-
sions may be naturally explained in the kt factorization
framework. Thus, we have estimated the cross sections for
direct and resolved photon(s) and compared the results to
their counterparts in standard collinear approximations.

We indeed found some enhancement of the cross sec-
tion for a direct photon scattering off both the proton
and the resolved photon. This effect itself is too small,
though, to get the theory results close to the experimen-
tal data. Furthermore, we showed that the cross sections
driven by two-gluon fusion are substantially larger (by a
factor of 2–3) when the unintegrated gluon is used. Despite
this enhancement, these subprocesses contribute only as
a 20–30% correction to the total cross section for bottom
production in the γp collisions, and less than 10% for γγ.

The sensitivity of the results to various model uncer-
tainties is found to be large. Thus, in the marginal case,
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Fig. 10a,b. Cross sections of cc̄ production in γγ interac-
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the theoretical results for γp → bb̄X in the kt factorization
framework are enhanced and agree with the H1 data point
within the errors. We do not interpret this as a strong in-
dication of consistency between data and the theory, but
rather as a consequence of the wide uncertainty band. Bet-
ter understanding of higher order corrections is crucial to
determine whether the H1 data point contradicts the QCD
results.

The picture is much clearer for γγ → bb̄X. This pro-
cess is dominated by the QED box diagram at low energies
and by the single-resolved photon mechanism at larger en-
ergies. Irrespectively of the assumption made within our
framework, the emerging results for e+e− → e+e−bb̄X,
σth = 1.9 pb at the e+e− collision energy s1/2 = 200 GeV,
are more than three standard deviations below the exper-
imental data, 13.1 ± 2.0 (stat) ± 2.4 (syst) pb [8]. Thus, in
the standard QCD+QED approach, the b production in
e+e− collisions is hard to explain.

Interestingly enough, the agreement between the the-
ory and the experimental data is good for the charm case
both for γγ and γ∗p. The very different behavior of charm
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Fig. 11. Cross section for the inclusive charm production in
γγ collisions. The data from the L3 experiment [7] are com-
pared with the outcome of the kt factorization. The solid line
represents our default choice for scales and parameterizations
of the gluon in the photon, summing all contributions. The
dashed line and the dotted line give the uncertainty due to the
choice of scale. The dashed-dotted line represents our previous
calculation [32] using the generalized saturation model

and bottom cross sections is surprising and calls for an
explanation.

6 Conclusions

In this study we have analyzed photoproduction of heavy
flavors in γγ and γp collisions using the kt factorization
approach. First, we obtained parameterizations of the un-
integrated gluon in the photon using the KMR method.
We compared features of the unintegrated gluon in the
photon and in the proton. Furthermore, we proposed a
parameterization of the gluon in the photon based on a
generalization of the saturation model.

The parameterizations, combined with off-shell matrix
elements, were used to estimate cross sections for charm
and bottom production, including contributions from the
resolved photon. The impact of a non-zero transverse mo-
mentum of the gluons was studied. Some enhancement
of the cross section was found in the kt factorization ap-
proach. In particular, we demonstrated the importance of
the resolved photon contribution to bottom production in
γp collisions. The sensitivity of the theoretical estimates
to the details of the model was investigated. The conclu-
sion is that the use of the kt factorization approach brings
the theoretical results for bottom production closer to the
data, but large discrepancies remain. For γp collisions, a
major inconsistency cannot be claimed, because of large
experimental errors and theoretical uncertainties. For the
γγ case, the b production excess is statistically signifi-
cant, despite the uncertainties. The kt approach, based
on QCD, does not agree with the data from LEP at the
three sigma level. On the contrary, the charm production
is well understood within QCD.
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Thus, an interesting question arises: why is a b-quark
production excess found in various processes? A poten-
tial explanation may be, perhaps, provided by higher or-
der corrections. Still, it is not clear why similar, or even
more important, corrections would not affect charm pro-
duction in a similar way. It is also interesting to ask about
uncertainties of the parton densities in the photon since
the experimental constraints from measurements of the
photon structure and a jet photoproduction are not very
stringent. Definitely, an attempt should be made to per-
form a new global fit of the parton densities in the photon,
including the bottom production data.

Another interesting explanation of the b-excess at the
Tevatron was suggested in [45] where the non-perturbative
fragmentation function of the b quark into B mesons was
updated by fitting to precise LEP data. It was found that
the discrepancy between standard theoretical calculations
and the Tevatron data is significantly reduced when an
improved model of fragmentation is used.

Finally, there is also a possibility that the answer to
the question leads beyond QCD [46]. Therefore, it is im-
portant to further constrain theoretical uncertainties of
bottom production rate estimates in QCD.

Acknowledgements. We are very grateful to Gunnar Ingelman,
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Appendix
A Virtual gluon–photon fusion

The partonic cross section for an off-shell gluon with the
transverse momentum k depends on the density matrix for
gluon polarizations εµ(k). In this study, we assume that
the gluons have a BFKL-like polarization tensor, that is∑

λ

εµ
λεν

λ
∗ =

kµkν

k2 . (22)

The result of the integration over the phase for an off-
shell matrix element describing gluon–photon fusion γ(p)
g∗(k) → QQ̄ is well known. We quote the result from [11]:

σ̂kf
γg (k2, M2, ν) =

παeme2
Qαs(µ̄2)

2M2 Θ(ν − 4M2 − k2)ρβ

×
{[(

1 + ρ − 1
2
ρ2
)

L(β) − 1 − ρ

]
(23)

+ [8 + ρ − (2 + 3ρ)L(β)]
k2

ν
+ [−8 + 2L(β)]

(
k2

ν

)2}
,

with

ν = 2p · k, ρ =
4M2

ν
, (24)

β =

√
1 − ρ

(
1 − k2

ν

)−1

(25)

and

L(β) =
1
β

log
1 + β

1 − β
. (26)

The heavy quark charge is denoted by eQ.

B Cross sections for virtual gluons

In this appendix, we follow the conventions of [41], with
some minor modifications. The kinematics of the gluon
fusion process g∗(k1) + g∗(k2) −→ Q(p4) + Q̄(p3) with
respect to the four-vectors p1 and p2 of the incoming pho-
tons/hadrons are given by

k1 = x1p1 + k1,

k2 = x2p2 − k2,

p3 = (1 − z1)x1p1 + z2x2p2 + k1 − ∆,

p4 = z1x1p1 + (1 − z2)x2p2 − k2 + ∆. (27)

The two-body phase space dΦ(2) of the QQ̄ pair can
be written in the following way:

dΦ(2) =
1

8π2

dz1

z1(1 − z1)
d2∆̃δ

(
ν − ∆̃

2
+ M2

z1(1 − z1)
− q2

)
,

(28)
where

q = k1 − k2,

ν = x1x2(2p1 · p2) = ŝ + q2,

∆̃ = ∆ − k1z1 − k2(1 − z1). (29)

Furthermore, the following relations hold:

ŝ =
∆̃

2
+ M2

z1(1 − z1)
,

M2 − t̂ = z1(ŝ + k1
2) + (1 − z1)k2

2 + 2∆̃ · k2,

M2 − û = (1 − z1)(ŝ + k1
2) + z1k2

2 − 2∆̃ · k2,

z2 =
[(1 − z1)q − ∆̃]2 + M2

(1 − z1)ν
,

1 − z2 =
[z1q + ∆̃]2 + M2

z1ν
. (30)

In this notation, the cross section σ̂kf
gg (k1,k2, M

2, ν)
for production of heavy quarks in two-gluon collisions,
g∗g∗ → QQ̄, equals (from [41])

σ̂kf
gg (k1,k2, M

2, ν) (31)

=
4π2

N2
c − 1

να2
s (µ̄

2)
∫

dΦ(2)D(k1,k2, ν,∆, z1, M
2),
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and the matrix element D(k1,k2, ν,∆, z1, M
2) is given by

D =
1

Nc

[ −1
(M2 − û)(M2 − t̂)

+
(B + C)2

k1
2k2

2

]

+ Nc

[
1
ŝ

(
1

M2 − t̂
− 1

M2 − û

)
(1 − z1 − z2)

− B2 + C2

k1
2k2

2

+
2(B − C)
k1

2k2
2ŝ

(
(1 − z2)k1

2 + (1 − z1)k2
2 + k1 · k2

)]

+ Nc

[
2
νŝ

(32)

− 2
k1

2k2
2

(
(1 − z2)k1

2 + (1 − z1)k2
2 + k1 · k2

)2
ŝ2

]
,

where the following notation has been used:

B =
1
2

− (1 − z1)(1 − z2)ν
M2 − û

+
ν(1 − z1 − z2)

2ŝ

+
∆ · (k1 + k2)

ŝ
, (33)

C =
1
2

− z1z2ν

M2 − t̂
− ν(1 − z1 − z2)

2ŝ
− ∆ · (k1 + k2)

ŝ
.
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